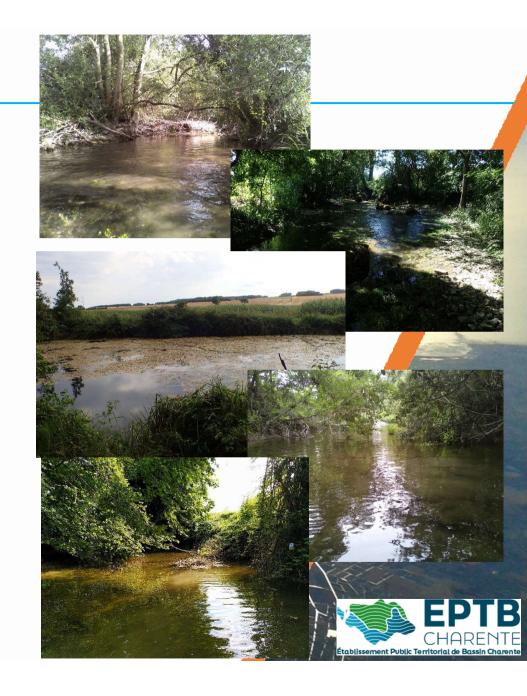
Débits biologiques secteurs fluviaux

6 septembre 2023
SAGE Charente
Aume - Couture

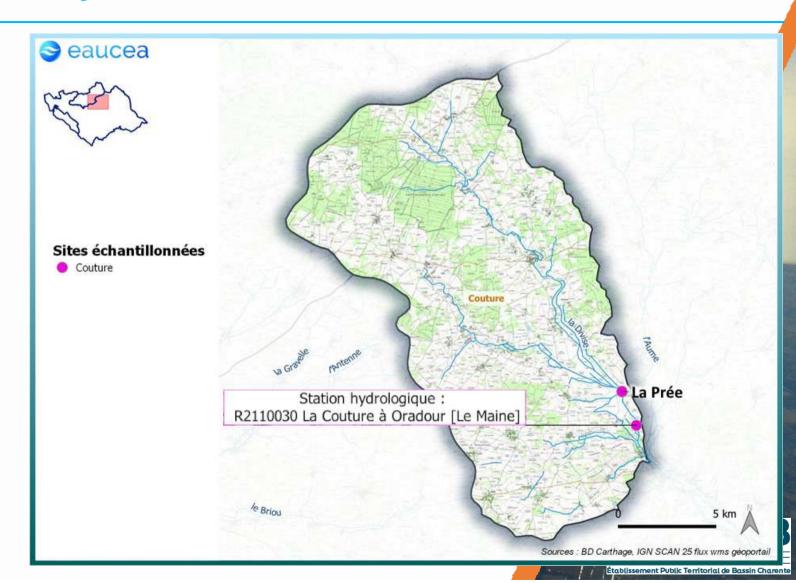
Ordre du jour


Caractéristiques du secteur :

- ➤ Stations et espèces cibles
- ➤ Périodes hydrologiques et enjeux

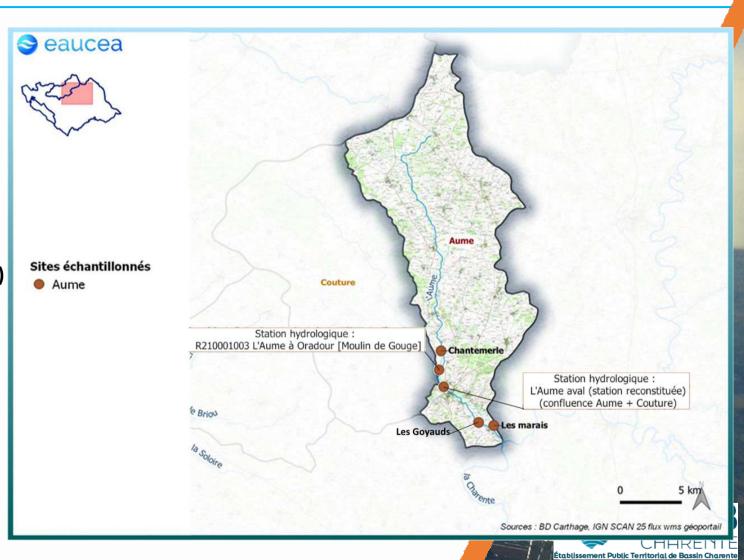
Rappel des indicateurs

Résultats


- ➤ Conclusion au niveau du secteur
- ➤ Conclusion au niveau du bassin

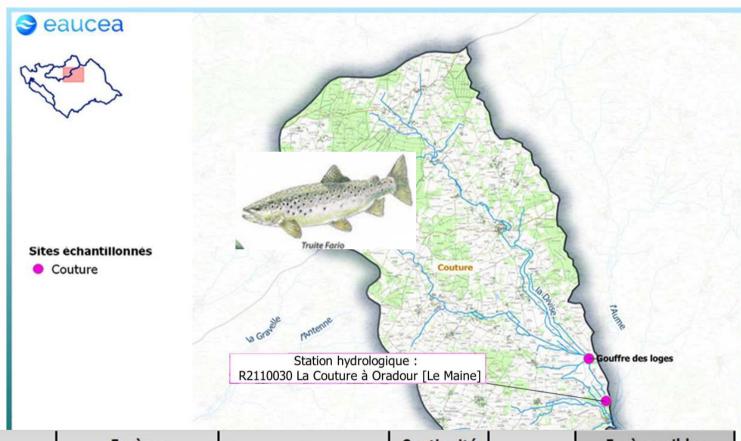
Ordre du jour

Couture


≻ La Prée

Ordre du jour

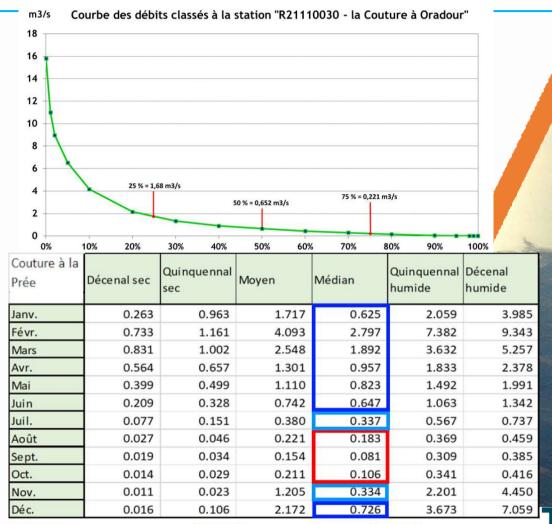
Aume


- > Chantemerle
- > Les Goyauds (Aume chenalisée)
- ➤ Les Marais (Vieille Aume)

Caractéristiques du secteur : stations et espèces cibles

Espèces « centrales »

> Truite fario



Charente Aume/Couture VAI LOF TRF CHE BBB BRS ABL GOU HOT LPP TAN ROT BAF SIL ANG CHA PER GRE PES BBB BRS ABL GOU HOT VAI TRF CHA HOT LPP BAF BRS ANG VAI TRF CHA	SAGE	Rivière	Espèces dominantes	Espèces accompagnatrices	Rhéophiles/lithophiles	Continuité latérale	Migrateurs	Espèces cibles proposées	
Etablissement Public Territorial de Bassin Char	Charente	Aume/Couture	VAI LOF TRF CHE	BBB BRS ABL GOU HOT	A PARTY OF THE ASSESSMENT OF THE PARTY OF TH	BRS	ANG		E

Courbes des débits classés permet le découpage en 4 périodes et l'analyse des Surfaces Pondérées Utiles (exemple à La Prée)

- → Débit médian mesuré
 - → Basses-eaux < débit 75 %
 - → Débit 75 % < Transition < débit 50 %</p>
 - → Débit 50 % < Hautes-eaux

Remarque Le repère QMNA 5 présenté sur les graphes de SPU est l'estimation du débit naturel

Débordement

 Connexion zones humides
 Reproduction brochet

Hautes-eaux

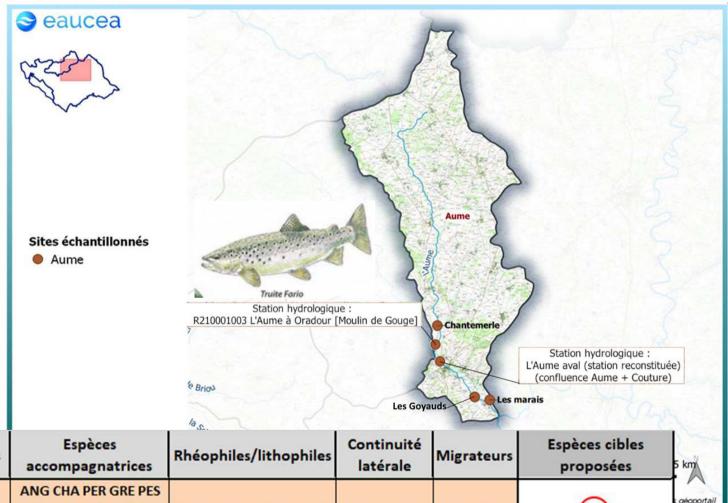
 Habitats lotiques
 Reproduction
 Salmonidés
 Auto-entretien de la granulométrie

Basses-eaux

 Perte d'habitat
 Perte de connexion longitudinale
 Période de croissance

Transition

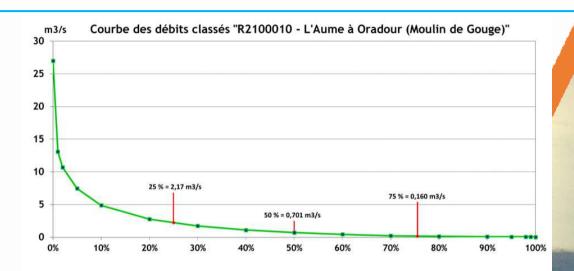
- Souvent reprise des écoulements
- Refroidissement
- Reproduction des salmonidés (automne)


ablissement Public Territorial de Bassin Charent

Fanka		Hiver			Printemps			Eté			Automne	
Espèce	Janvier	Févr	ier Ma	ars Avril	Mai	Juin	Juillet	Août	Septemb	Octobre	Novembre	Décembr
Couture				Hautes-eau	v		Période de		Basses-eau	v	Période de	Hautes-
Couture				nautes-eau	<u> </u>		transition		Dasses-eau.	^	transition	eaux
Chabot												
(Cottus				Reproduction	Emergence	Maturation						
gobio)												
Truite												
fario												
(Salmo	Incubation	Eclosion	Maturation								Reprodu	ıction
trutta												
fario)												
Vairon												
(Phoxinus					Reprod	luction						
phoxinus)												

Caractéristiques du secteur : stations et espèces cibles

> Truite fario



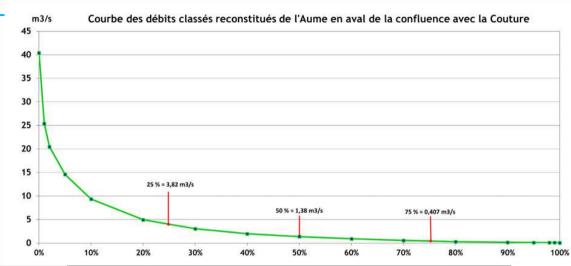
				.2.		The second second		
SAGE	Rivière	Espèces dominantes	Espèces accompagnatrices	Rhéophiles/lithophiles	Continuité latérale	Migrateurs	Espèces cibles proposées	5 km
Charente	Aume/Couture	VAI LOF TRF CHE	ANG CHA PER GRE PES BBB BRS ABL GOU HOT LPP TAN ROT BAF SIL	VAI TRF CHA HOT LPP BAF	BRS	ANG	VAITRECHA	géoportail ARENT
							Etablissement Public Territori	al de Bassin Charen

Courbes des débits classés permet le découpage en 4 périodes et l'analyse des Surfaces Pondérées Utiles (exemple à Chantemerle)

- → Débit médian mesuré
 - → Basses-eaux < débit 75 %
 - → Débit 75 % < Transition < débit 50 %
 - → Débit 50 % < Hautes-eaux

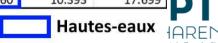
Remarque Le repère QMNA 5 présenté sur les graphes de SPU est l'estimation du débit naturel

Aume à Chantemerle	Décenal sec	Quinquennal sec	Moyen	Médian	Quinquennal humide	Décenal humide
Janv.	0.822	1.357	3.327	2.615	5.240	8.788
Févr.	0.908	1.077	3.223	2.123	4.300	9.440
Mars	0.732	0.962	2.302	1.738	3.445	6.169
Avr.	0.440	0.540	1.279	0.838	1.734	3.390
Mai	0.237	0.356	0.935	0.585	1.331	2.604
Juin	0.107	0.148	0.485	0.335	0.765	1.288
Juil.	0.060	0.075	0.204	0.128	0.312	0.540
Août	0.044	0.051	0.124	0.079	0.148	0.295
Sept.	0.042	0.048	0.131	0.075	0.159	0.308
Oct.	0.044	0.050	0.304	0.091	0.376	0.809
Nov.	0.063	0.099	1.489	0.376	1.803	6.956
Déc.	0.172	0.429	2.588	1.496	4.231	8.679



Courbes des débits classés permet le découpage en 4 périodes et l'analyse des Surfaces Pondérées Utiles (exemple aux Goyauds, débits reconstitués)

- → Débit médian mesuré
 - → Basses-eaux < débit 75 %
 - → Débit 75 % < Transition < débit 50 %</p>
 - → Débit 50 % < Hautes-eaux


Remarque Le repère QMNA 5 présenté sur les graphes de SPU est l'estimation du débit naturel

Aume aux Goyauds	Décenal sec	Quinquennal sec	Moyen	Médian	Quinquennal humide	Décenal humide
Janv.	1.648	3.254	4.442	1.860	8.771	12.974
Févr.	1.960	2.786	9.651	6.607	17.129	21.610
Mars	1.946	2.504	5.662	4.439	7.760	11.957
Avr.	1.165	1.388	2.902	2.096	3.911	5.217
Mai	0.679	0.951	2.406	1.654	3.326	4.554
Juin	0.335	0.635	1.592	1.270	2.342	2.880
Juil.	0.180	0.281	0.684	0.531	0.997	1.273
Août	0.095	0.145	0.416	0.289	0.594	0.827
Sept.	0.099	0.125	0.368	0.178	0.540	0.857
Oct.	0.100	0.129	0.689	0.250	0.959	1.221
Nov.	0.116	0.156	3.425	0.895	5.470	12.097
Déc.	0.295	0.545	5.866	1.960	10.393	17.699

Débordement

• Connexion zones humides • Reproduction

brochet

Hautes-eaux

Habitats lotiques
 Reproduction
 Salmonidés
 Auto-entretien de

la granulométrie

Basses-eaux

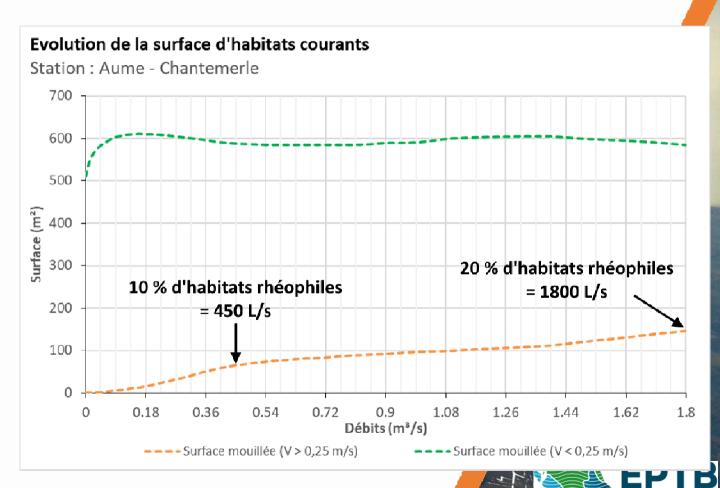
 Perte d'habitat
 Perte de connexion longitudinale
 Période de croissance

Transition

- Souvent reprise des écoulements
- Refroidissement
- Reproduction des salmonidés (automne)

tablissement Public Territorial de Bassin Charento

Espèce		Hiver			Printemps				Eté			Automne		
Espece	Janvier	Févri	ier Ma	ars Av	ril Ma	ai	Juin	Ju	illet	Août	Septemb	Octobre	Novembre	Décembr
A			Hout				Période de tr	onciti			Bassas agus		Période de	Hautes-
Aume			паиц	es-eaux			Periode de tr	ansitio	on		Basses-eau	X	transition	eaux
Chabot														
(Cottus				Reproduction	on E	Emergence	Maturation							
gobio)														
Truite														
fario														
(Salmo	Incubation	Eclosion	Maturation										Reprodu	iction
trutta														
fario)														
Vairon											·			
(Phoxinus						Reprod	luction							
phoxinus)														

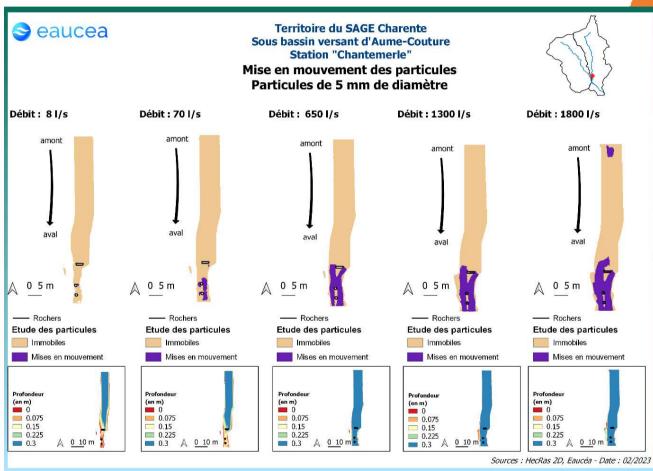

Rappel des indicateurs et méthode d'analyse

- Présence d'habitats rhéophiles (« rapides » = + 25 cm/s) notamment benthiques/invertébrés (comme dans les indices biologiques)
- Capacité d'auto-entretien du lit : entretien des frayères, décolmatage
- Connectivité longitudinale
- Habitats piscicoles qualité (Valeur d'Habitat) et quantité (Surface Pondérée Utile) des habitats piscicoles
- -Aux Goyauds (station « Aume chenalisée ») : oxygénation

Rappel des indicateurs : Rhéophilie

A Chantemerle:

- Seuil de **10** % **d'habitats rhéophiles** atteint pour **450 L/s** (atteint 59 % du temps) en basses-eaux
- -Seuil de **20** % **d'habitats rhéophiles** atteint pour **1800 L/s** (atteint 29 % du temps)

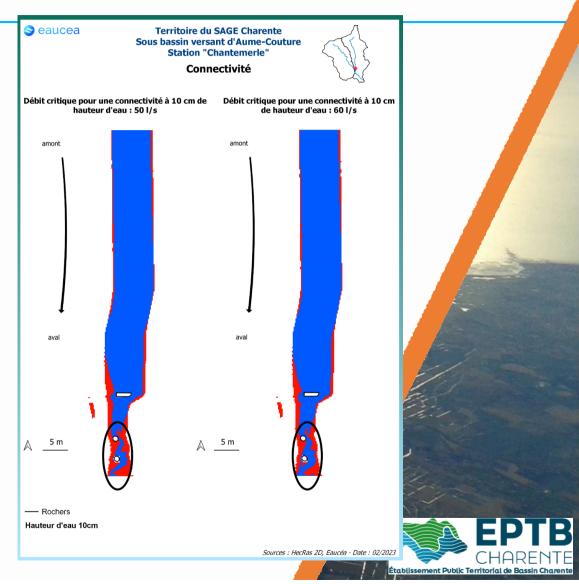


Rappel des indicateurs: Auto-entretien

A Chantemerle:

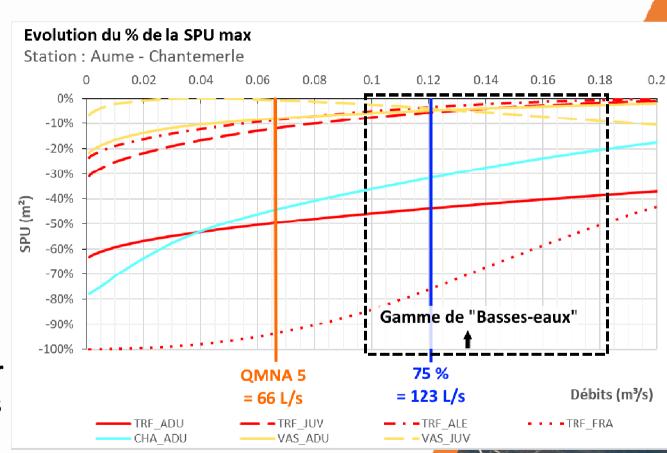
- Pour le **décolmatage** (limon et sable) en **basses-eaux :** seuil de **66 L/s**

- Pour l'entretien des frayères (particules de 5 à 10 mm) en hautes-eaux et transition :
Seuil de 650 L/s



Rappel des indicateurs : Connectivité longitudinale

A Chantemerle:

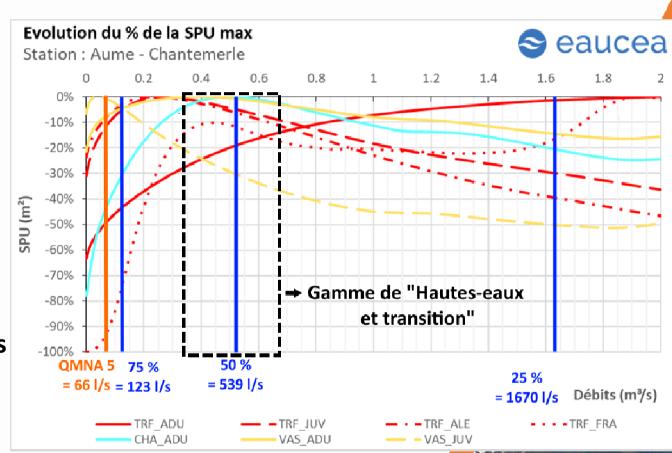

- Garantie pour les petites espèces (5 cm) à 30 L/s
- -Garantie pour les grandes espèces (10 cm) à 60 L/s

Rappel des indicateurs : Surface pondérée utile

A Chantemerle, en basseseaux :

- Borne basse : 80 % de la
 SPU de référence du
 Chabot = 100 L/s
- Borne haute: 80 % de la SPU max du Chabot et valeur basse du meilleur compromis piscicole = 180 L/s

Gamme de débit biologique « Basses-eaux» = de 100 L/s à 180 L/s

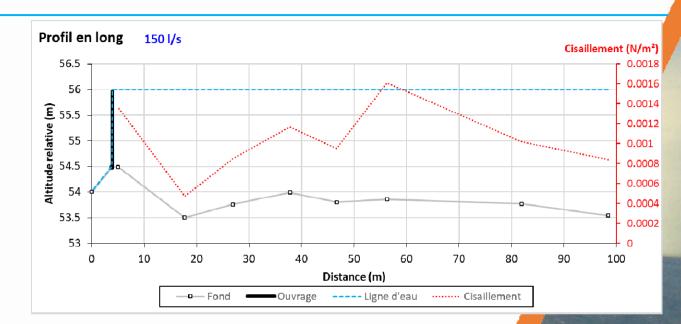


Rappel des indicateurs : Surface pondérée utile

A Chantemerle, en hauteseaux et transition :

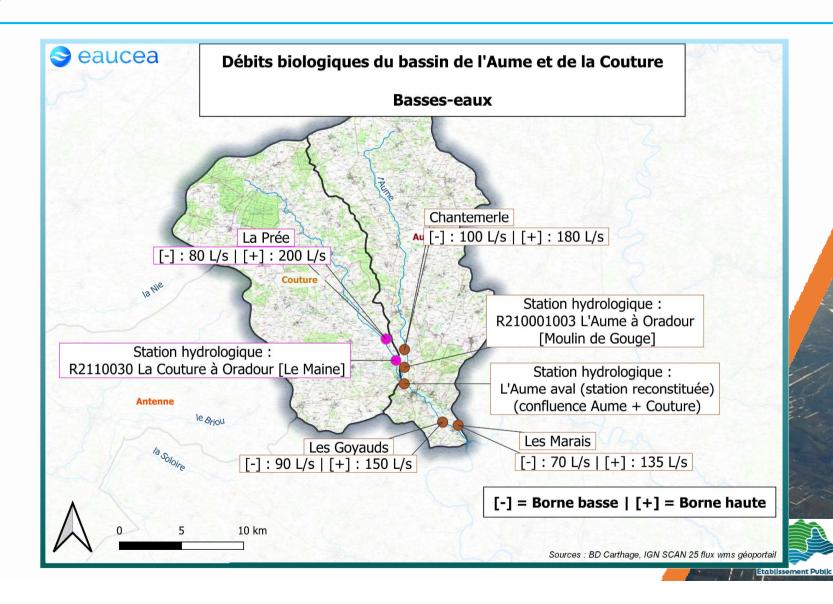
- Borne basse : 90 % de la SPU de référence pour la truite adulte = 350 L/s

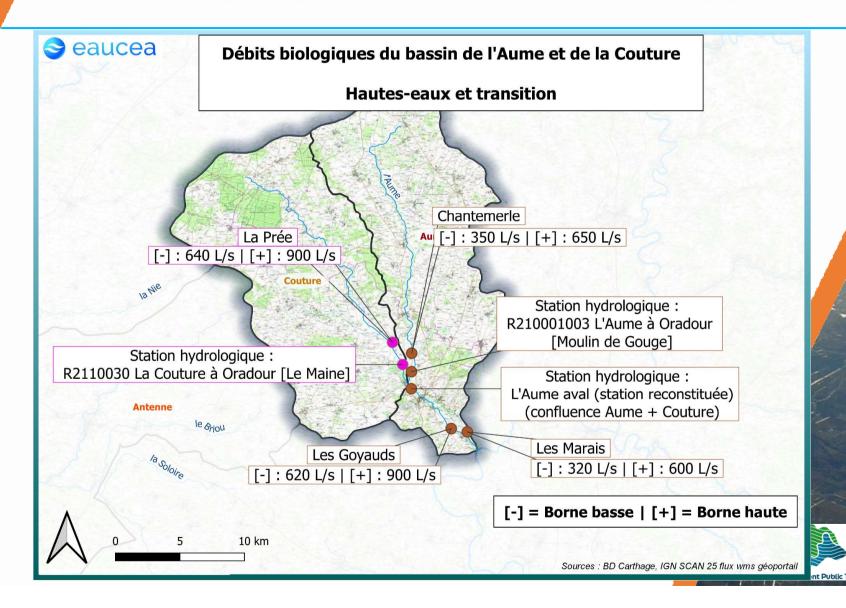
-Borne haute : entretien des frayères = 650 L/s


Gamme de débit biologique « Hautes-eaux et transition » = de 350 L/s à 650 L/s

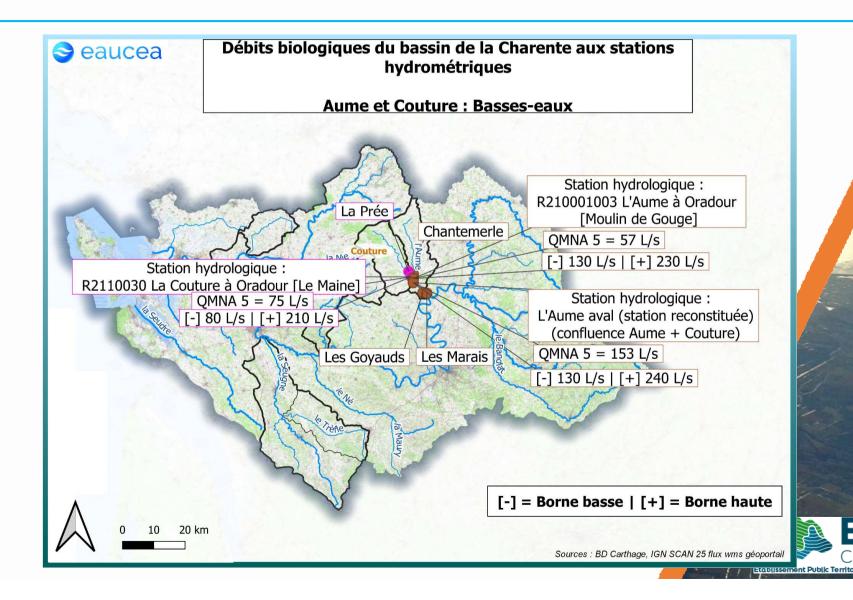
Rappel des indicateurs : Oxymétrie

Aux Goyauds, uniquement en basses-eaux :

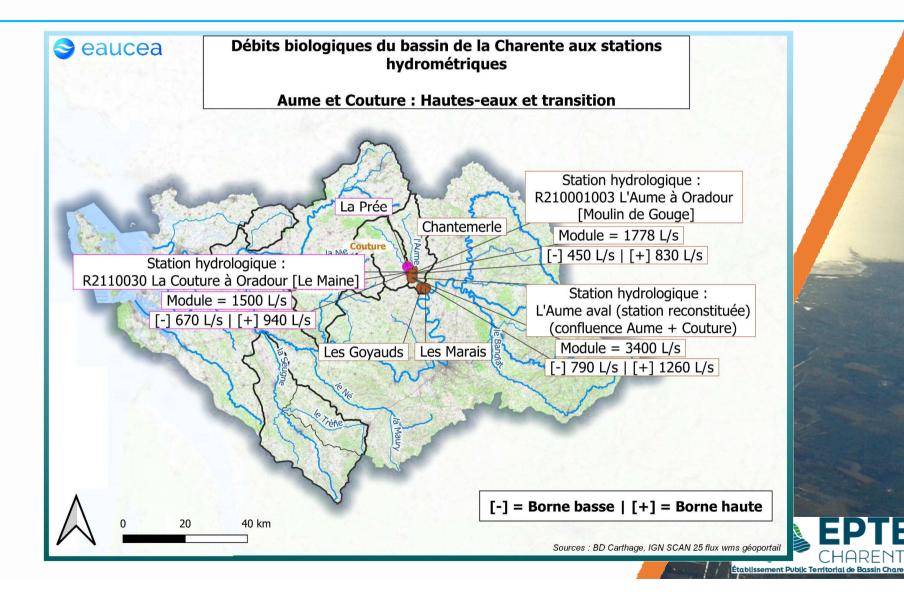

Borne basse : maintientd'un cisaillement suffisant àl'oxygénation = 200 L/s



	PF	PF 1	PF 2	PF 3	PF 4	PF 5	PF 6	PF 7	PF 8	PF 9	PF 10
	Débit	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
						Cisaille	ment				
						N/r	n²				
T08		0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.006	0.007	0.00
T07		0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.007	0.009	0.01
T06		0.000	0.001	0.002	0.003	0.004	0.006	0.008	0.011	0.014	0.01
T05		0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.008	0.01
T04		0.000	0.001	0.001	0.002	0.003	0.005	0.006	0.008	0.010	0.01
T03		0.000	0.000	0.001	0.002	0.002	0.003	0.004	0.006	0.007	0.00
T02		0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.00
T01		0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.009	0.011	0.01
								The Control of the Co	Etablisse	ment Public Territor	ial de Bassin Cha


		Hautes-eaux	Transition	Basses-eaux
La Prée	Borne +	Entretien des fra	yères	80 % de la SPU max pour la truite juvénile
La Fiee	Borne -	90 % de la SPU de référence po	our la truite adulte	80 % de la SPU de référence de la truite juvénile
Chantemerle	Borne +	Entretien des fra	yères	80 % de la SPU max du Chabot et valeur basse du meilleur compromis piscicole
Cilumenterie	Borne -	90 % de la SPU de référence po	our la truite adulte	80 % de la SPU de référence du Chabot
	Borne +	80 % de la SPU max de la	truite adulte	80 % de la SPU max de la truite juvénile
Les Goyauds	Borne -	90 % de la SPU de référence po	our la truite adulte	80 % de la SPU de référence du Chabot et valeur basse du meilleur compromis piscicole
Les Marais	Borne +	100 % de la SPU max pour l	a fraie de truite	80 % de la SPU max du Chabot et valeur basse du meilleur compromis piscicole
LES Marais	Borne -	90 % de la SPU de référence po	our la truite adulte	80 % de la SPU de référence du chabot

			Hiver			Printemp	S		Eté			Automne		
		Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	
en L/s	Couture			Ha	utes-eaux			Période de transition	E	asses-eau	ıx	Période de transition	Hautes- eaux	
La Dráa	Borne +				90	0				200		900		
La Prée	Borne -				64	0		80			640			
			Hiver			Printemp	S		Eté			Automne		
		Janvier	Février	Mars	Avril				Août	Septembre	Octobre	Novembre	Décembre	
en L/s	Aume			Hautes-	eaux		Période de transition		Basses-		Période de transition	Hautes- eaux		
Cl t	Borne +				650		•		180		650			
Chantemerle	Borne -				350				100	350				
Les Goyauds	Borne +				900				150)		900 620		
Les Goyauus	Borne -				620				90					
Les Marais	Borne +				600				135	5		600		
Les iviarais	Borne -				320	320			70			320		
en L/s/km2	Couture			Ha	utes-eaux			Période de transition	E	Basses-eau	ıx	Période de transition	Hautes- eaux	
La Prée	Borne +				4.9	9		-		1.1		4.9		
Lariee	Borne -				3.	5				0.4		3.5		
en L/s/km2	Aume			Hautes-	eaux		Période de transition	Basses-eaux				Période de transition	Hautes- eaux	
Chantemerle	Borne +				4.3				1.2			4.3		
Chantemente	Borne -				2.3			0.7			2.3			
Les Goyauds	Borne +				2.0				0.3			2.0		
LC3 GO yauus	Borne -				1.4				0.2			1.4		
Les Marais	Borne +				1.3				0.3			1.3		
LC3 IVIAI AIS	Borne -				0.7				0.2			0.7		



Résultats: Conclusion au niveau du bassin

Résultats: Conclusion au niveau du bassin

Merci de votre attention

