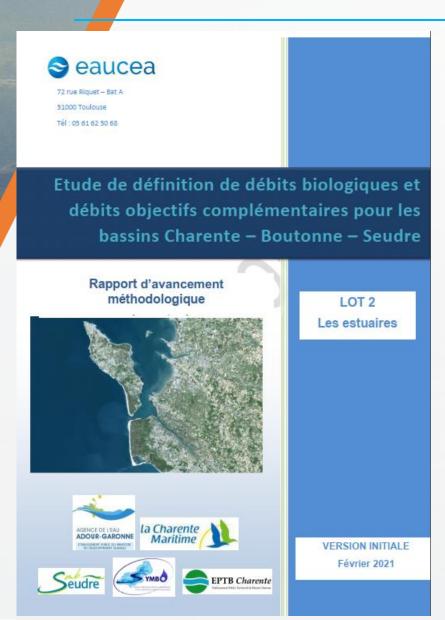
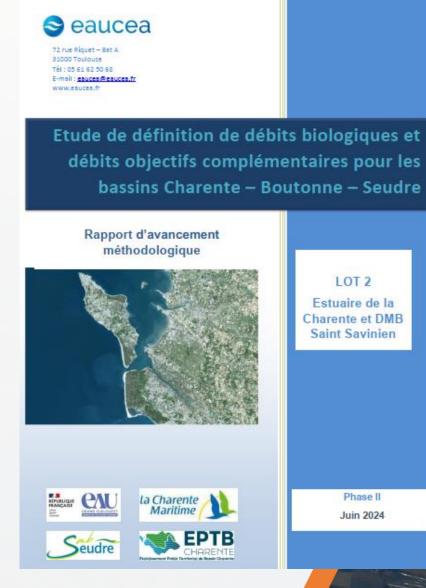

Etude de définition de débits biologiques pour les estuaires Lot 2 Charente – Boutonne – Seudre

Cotech présentation des résultats

6 septembre 2024


Ordre du jour


- 1. Rappel de la démarche et organisation
- 2. présentation des méthodes mises en œuvre et principaux résultats
- 3. Discussion avec les scientifiques
- 4. Les enjeux du changements climatiques
- 5. Perspectives pour des travaux universitaires

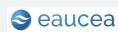
2 Rapports : Méthodologie puis résultats

Estuaire de la Charente et DMB Saint Savinien Charente Maritime **EPTB** Charente

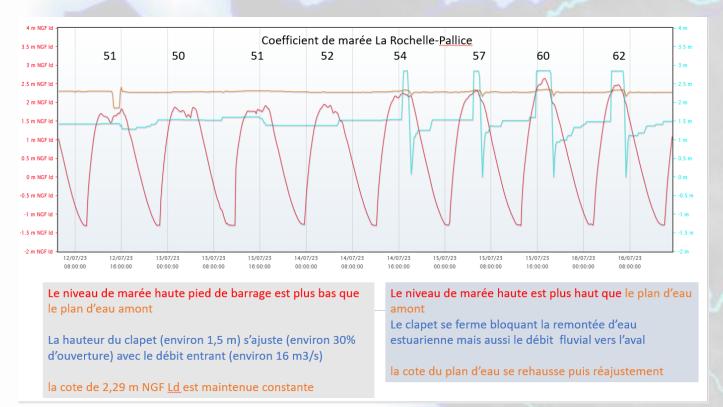
eudre

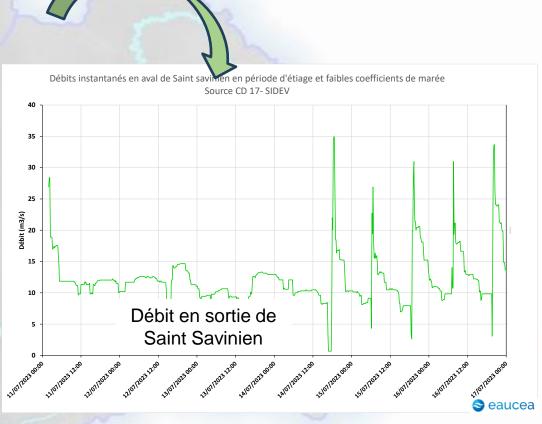
LOT 2

Phase II Juin 2024


Objectifs: Rechercher des relations entre les débits fluviaux et le fonctionnement de l'écosystème estuariens

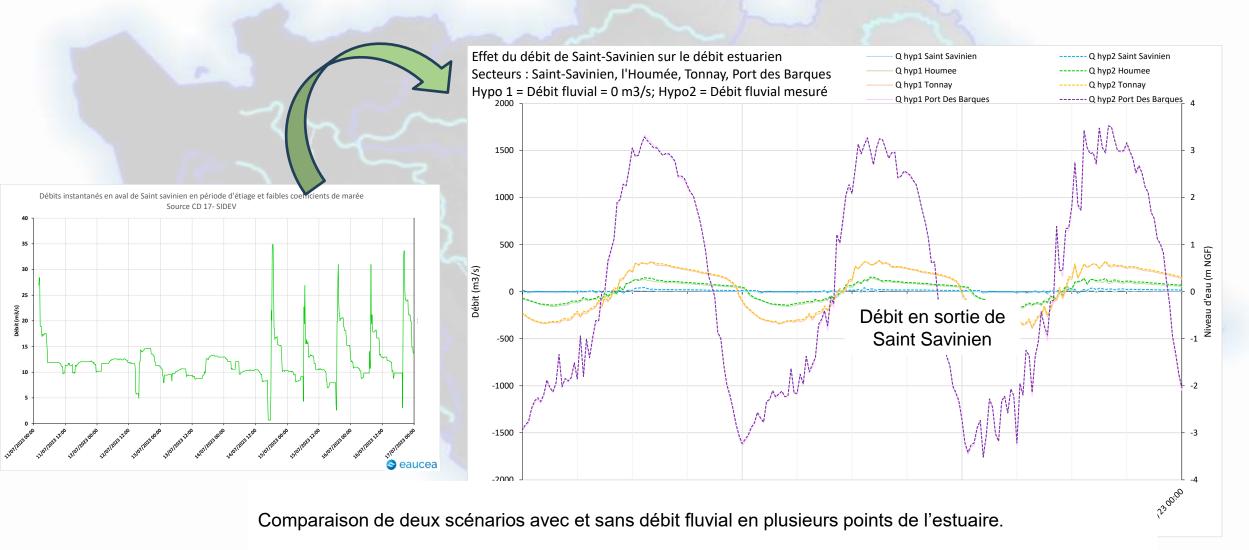
eudre


Chaque système estuarien est très complexe: Freins scientifiques qui doivent être pris en compte = > marges de progrès à moyen et long termes

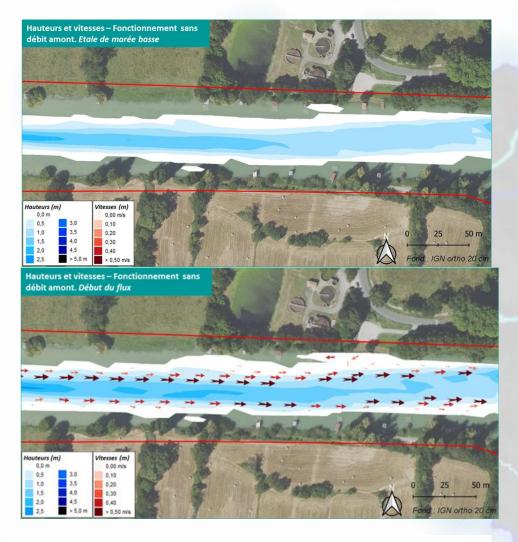

Mais attente du SAGE pour orienter la gestion quantitative du bassin versant et de l'Etat pour la gestion de l'ouvrage de Saint Savinien; la démarche proposée est :

- 1. Décrire : renseigner le maximum de paramètres accessibles avec les données existante
- Des données hydrologiques, description du régime annuel des apports;
- Des données bathymétriques, permettent une modélisation hydraulique de l'effet conjoint des marées et des débits;
- Des données qualité des eaux en continu (Magest) qui offrent la possibilité de construire des relations empiriques : Relier l'observation à ce que l'on peut décrire sur le plan hydraulique
- 2. Interpréter:
- > Fixer des objectifs biologiques
- Effectuer une analyse du risque (fréquence)
- Proposer des valeurs de débits sur le cycle annuel

Des débits amont impactés par la gestion type « éclusée » de Saint Savinien



La gestion des vannes doit tenir compte <u>en continu</u> de la combinaison débit fluvial/hauteur de marée.


Le débit en aval est donc fortement contrasté au pas de temps horaire.

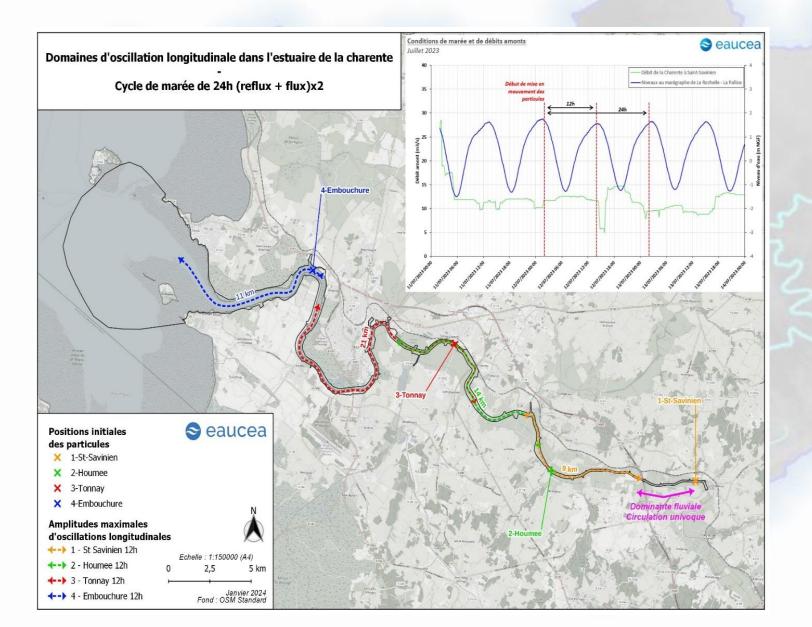
Cependant, les débits amont sans incidence notable sur les débits estuariens et insignifiant à l'embouchure (hors crue)

Un résultat important : la gestion du plan d'eau de Saint Savinien n'a pas d'effet significatif à l'embouchure

Les conditions de déplacement des poissons ne sont pas dépendantes du débit sauf au niveau de l'ouvrage (étude en cours)

Les conditions de circulations hydrauliques jusqu'au pied de l'ouvrage semblent respectées y compris pour un débit fluvial nul.

Tableau récapitulatif des groupes d'espèces ICE et des capacités de nage et de saut correspondantes.


Groupe IC	E Espèces	Espèces sauteuses	V, Spri	int Umax as (m/s)	Hauteur de saut associé (m)			
		Sauteuses	Min	Moy	Max	Min	Moy	Max
1	Saumon atlantique (<i>Salmo salar</i>) Truite de mer ou de rivière [50-100] (<i>Salmo trutta</i>)	Oui	4,5	5,5	6,5	1	1,5	2,5
2	2 Mulets (Chelon labrosus, Liza ramada)		4	4,75	5,5	0,8	1,1	1,8
3a	Grande alose (Alosa alosa)		3,5	4,25	6			
3b	Alose feinte (Alosa fallax fallax)	Non	3	3.75	4.5	-	-	-
3с	Lamproie marine (Petromyzon marinus)		3	3,75	4,0			
4a	4a Truite de rivière ou truite de mer [25-55] (Salmo trutta)		3	4	5	0,5	0,9	1,4
4b	4b Truite de rivière [15-30] (Salmo trutta)		2,5	3	3,5	0,3	0,5	0,8

Vue aérienne du site

> Le chemin emprunté dépend de l'attractivité

L'oscillation amont aval des masses d'eau couvre plusieurs km et progresse vers l'aval

Test en étiage sur la Charente.

Confirme les observations physico chimiques de déplacement du domaine hypoxique et donc de son emprise de plusieurs km

		Distances parcourue (m)					
	1	3 mg/L		5 mg/L			
Coef	Cycle	Flux	Reflux	Flux	Reflux		
100	1	7 327	- 12 702	16 604	- 25 037		
101	2	11 745	- 15 793	16 596	- 23 157		
100	3	12 239	- 15 941	16 689	- 24 260		
99	4	11 712	- 14 819	15 567	- 19 976		
96	5	10 603	- 13 788	14 963	- 20 663		
92	6	9 167	- 9570	13 540	- 17 467		
87	7	9 612	- 11 696	13 941	- 19 362		
81	8	6 687	- 6110	12 688	- 15 238		
73	9	4 956	- 4295	11 254	- 16 166		
66	10	3 547	- 2295	11 468	- 14 114		

2. présentation des méthodes mises en œuvre et principaux résultats

Enjeux besoins écologiques des poissons Turbidité, Salinité, O2, Température

Critères Charente	Hiver	Printemps	Eté	Automne	Année	
Continuité écologique	Se	lon calendrier mig		spèces ciblées notan avinien)	nment alose	
Salinité		Struc	turation écolo	gique estuarienne		
Turbidité	Expulsion Bouchon vaseux	Ро	Position dans l'estuaire			
Oxygène dissous		Risque Selon la baisse Migration alose maximal des températures, habitat baisse du risque				
Synthèse	Facteurs limitants le plus exigeant Confrontation au régime hydrologique					

Exigences écologiques prises en compte : Une décision du conseil scientifique : viser 4 mg/l O₂

- > La température de l'eau est indépendante du débit
- ➤ La salinité est une donnée structurante amont aval de l'estuaire. Le maintien d'une zone oligohaline significative dépend du débit.
- L'oxygène est <u>le</u> paramètre central de l'habitabilité. Le conseil scientifique de juillet 2024, a recommandé de s'intéresser aux phases de concentration inférieure à 4 mg/l considérées comme limitante de l'habitat même si elles sont de faible durée.

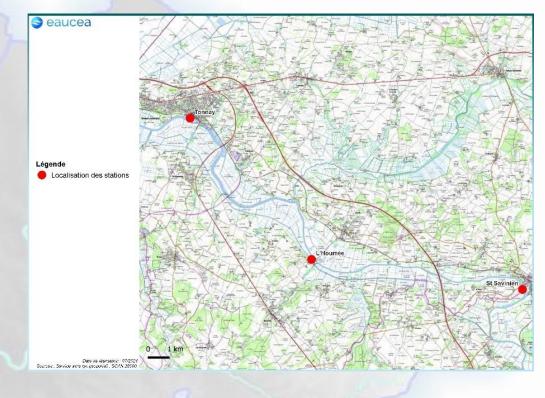
Tableau 13. Grille proposée en oxygène	dissous, température, turbidité et
	les masses d'eaux de transition
françaises.	

01	Oxygène	Température (°C)		Turbidité (NTU) : masse		Salinité (PSU)	
Classes	OD mg.L	Estuaire	Lagune	Tidale	Non tidale	Lagune (*)	
Très bonne	≥ 7	< 20	< 22	50	. 5	. 40	
Bonne	< 7 et ≥ 5	≥ 20 et < 23	≥ 22 et < 25	≤ 50	< 5	< 40	
Moyenne	< 5 et ≥ 3	≥ 23 et < 28	≥ 25 et < 30	> 50 et ≤ 500	> 5 et ≤ 50	≥ 40 et < 100	
Médiocre	< 3 et ≥ 2	> 28	. ≥30	>500	> 50	≥ 100	
Mauvaise	< 2	2 20	250	>500	> 50	≥ 100	

Pour l'oxygène dissous, la métrique retenue est le percentile 10. Elle se calcule sur des données mensuelles, acquises en période estivale, au fond, sur 6 ans. La grille de qualité pour l'oxygène dissous est présentée dans le tableau 68 ci-dessous.

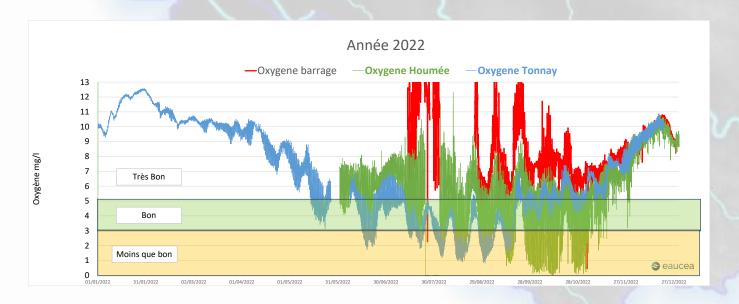
Tableau 68 : grille de qualité pour l'indicateur oxygène dissous

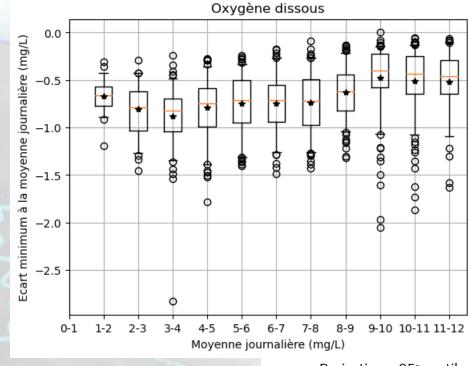
TYPE	TYPES	MASSES D'EAU	GRILLE
européen	français concernés	françaises concernées	Oxygène dissous (mg/L)
Sans objet	Tous types	Toutes masses d'eau côtières	Très Bon:>5 Bon:5-3 Inférieur à Bon:≤3



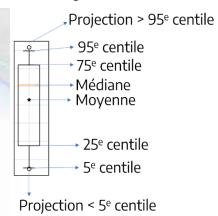
Enjeux qualité des eaux : l'apport des 3 sondes en continu NTU, Salinité, O2, Température

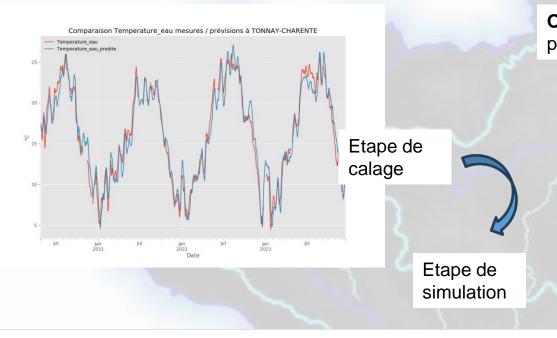
- La sonde sur ponton de l'EPTB Charente située à Tonnay-Charente, gérée par le réseau MAGEST.
- Les sondes situées sur le haut estuaire de la Charente sur bouée à l'Houmée sur la commune des Bords et sur ponton en amont du barrage de Saint Savinien, CD 17, suivi LIENSs
- D'autres sondes non exploitables
- Caractérisation de la représentativité longitudinale et latérale de ces mesures(modèle 2D)
- Caractérisation de la représentativité verticale (campagne de mesure 2 aout 2022 par Sabine SCHMIDT(EPOC) et eaucéa)


Qualification de l'utilité des sondes:


- La sonde Magest est positionnées dans une zone critique de l'estuaire (limite oligohaline) et donc importante pour la compréhension du système écologique estuarien en lien avec le débit (bon candidat pour un point nodal qualité)
- Les 2 sondes du CD 17 sont positionnées de part et d'autre de St Savinien et donc utile à l'analyse de la gestion de l'ouvrage et des usages de l'eau (salinité, envasement) dans la partie eau douce et oligohaline de l'estuaire

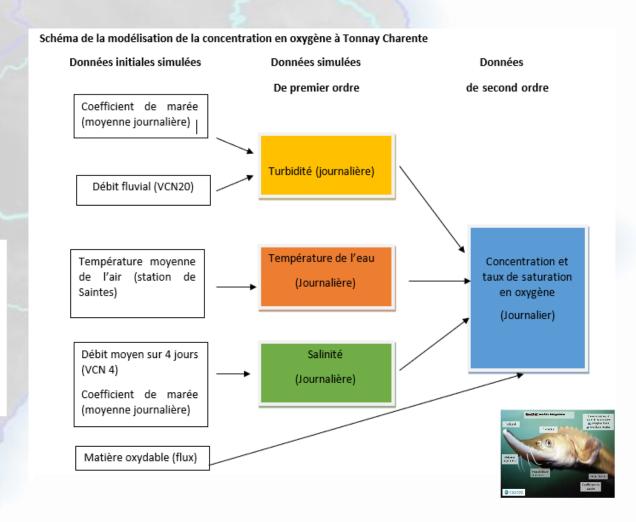
Forte variabilité des valeurs pendant le cycle annuel et au sein d'un cycle de marée


L'approche a consisté à modéliser les valeurs des paramètres en **moyenne journalière** en lien avec les valeurs journalières des débits et des températures et pour l'oxygène à évaluer les plages de variations (pas de temps 15') autour de cette moyenne.




Pour O₂ à Tonnay, l'écart entre le minimum et la moyenne journalière atteint 1 mg/L

5 mg/L en Moy Jour = 4 mg/l en ponctuel

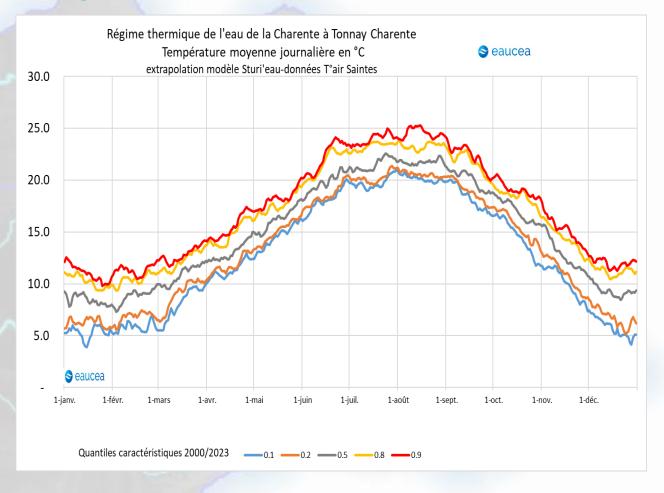

Le modèle statistique Sturi'eau permet de simuler des conditions journalières à multiparamètres

Exemple de la température de l'eau

Objectif: Simuler les conséquences qualitatives de combinaisons de paramètres externes (Débits, température, marée, matière oxydable)

Présentation des résultats sous forme matricielle

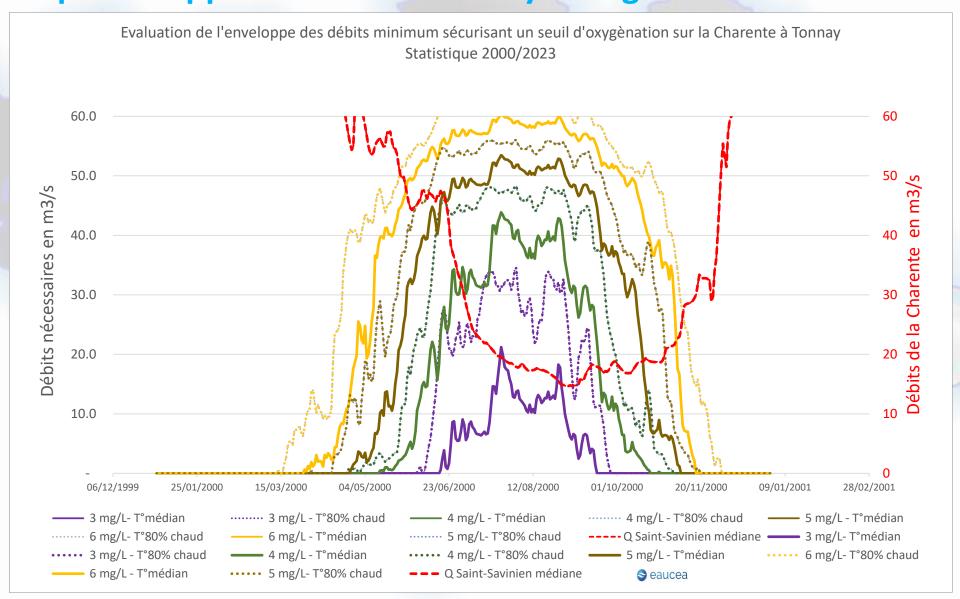
Résultat: L'oxygénation est sous le triple pilotage du débit, du coefficient de marée et de la température **Limites**: Insuffisance des chroniques pour la salinité ; turbidité fortement influencée par l'activité humaine; blocage du calcul au débit de crue;



Analyse du risque basée sur la fréquence 20% de deux aléas

0	Nombre	Fréquence	Risque	cumulé
25	1	0%		100%
30	17	2%	2%	100%
35		3%	5%	98%
40	23	3%	8%	95%
45	28 48	6%	14%	92%
50	59	7%	20%	86%
55	65	8%	28%	79%
60	72	8%	36%	72%
65	64	7%	44%	63%
70	61	7%	51%	56%
75	76	9%	60%	49%
80	69	8%	68%	40%
85	64	7%	75%	32%
90	66	8%	83%	24%
95	65	8%	91%	17%
100	25	3%	94%	9%
105	28	3%	97%	6%
110	18	2%	99%	3%
115	7	1%	100%	1%
120	0	0%	100%	0%
	856	100%	_	

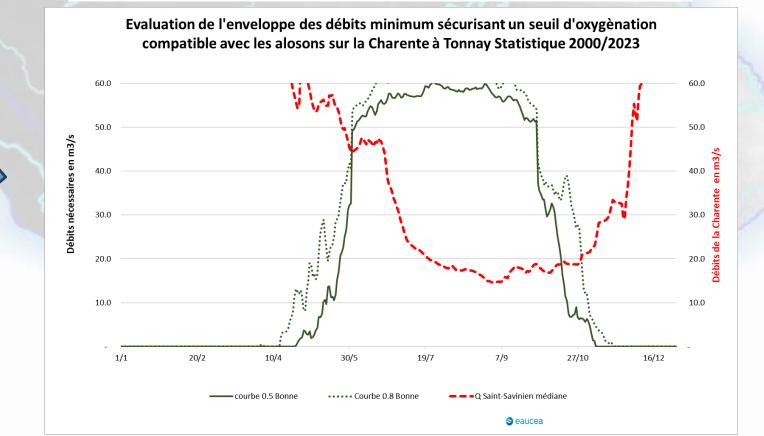
Les grandes marées sont les plus à risque pour la qualité des eaux.


1 marée sur 4 à 5 dépasse 90

Les températures fortes sont les plus à risque pour la qualité des eaux.

1 température sur 5 dépasse la courbe orange

Croisement des aléas et de la vulnérabilité (seuil O₂ recherché) = Risque et rapprochement avec l'hydrologie : Charente


Analyse ciblée sur les migrations des alosons

Etat de l'indicateur en fonction de la température et de l'oxygène

Source du tableau : https://www.migrateurscharenteseudre.fr/tableau-de-bord/grandealose/2023/impact-du-bouchon-vaseux-oxy-tempsur-les-alosons-2/

Oxygène/ Température	5≤Temp<15°C	15≤Temp<20°C	20≤Temp<25°C	≥25°C
≥6mg/L	Bon	Bon	Bon	Moyen
5≤Oxy<6 mg/L	Bon	Bon	Moyen	Mauvais
4≤Oxy<5 mg/L	Moyen	Moyen	Moyen	Mauvais
3,3≤Oxy<4 mg/L	Moyen	Mauvais	Mauvais	Mauvais
2≤Oxy<3,3 mg/L	Mauvais	Mauvais	Mauvais	Mauvais
<2 mg/L	Mauvais	Mauvais	Mauvais	Mauvais

Les différents états de l'indicateur au cours du temps sont donc compilés sur la période prépondérante définie pour la dévalaison des alosons, à savoir du **15 mai au 15 octobre.**

Conclusions : proposition de débit biologique estuarien Charente

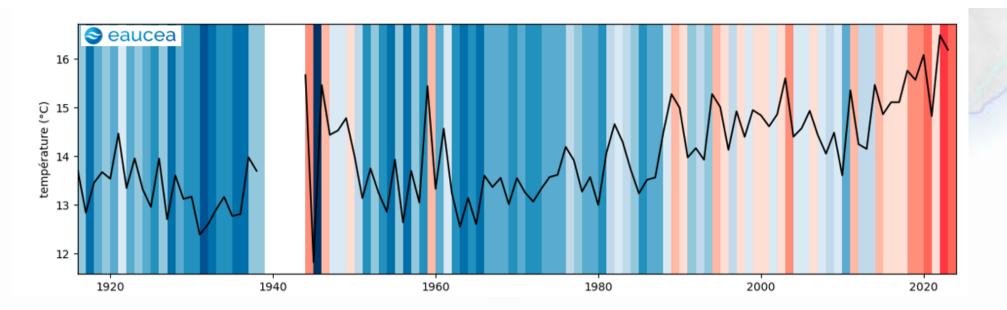
Critère	De janvi	er à mai	De juin à octobre	De nove Décer			
O2 3 mg/L	Sans obje	et garanti	15 m ³ /s (risque 1 an sur 2)	Sans objet garanti par			
Bon état DCE	par		30 m³/s (risque 2/10)	l'environ	nement		
O2 5	l'enviror	nement	30 m ³ /s (risque 1 an sur 2)	therm	ique		
mg/Très bon	thern	nique	45 m³/s risque (risque 2/10)				
état DCE et							
objectif							
plancher 4							
mG/L							
O2		30 à 10	50 m³/s à 60 m³/s (objectif	10 à 30			
Migration		m³/s en	moyens et fréquence	m³/s en			
alosons		mai	médiane)	septembre			
(6mg/L d'O2)							
Continuité	Sans obje	et sauf pour	r la passe à poissons de St Savin	ien/complexe	de Saint-		
hydraulique			Savinien (bras mobile).				
	Les circul	ations d'ea	u internes à l'estuaire sont très	largement pil	otées par		
			le jeu des marées				
Salinité	Objectif o	le maintien	d'une zone oligohaline en amo	nt de Tonnay	-Charente		
			12 m³/s				
Turbidité	Situation actuelle 60 m ³ /s pour NTU < 500						
		anément	irréali	irréaliste			
	fav	orable					

Conclusions : proposition de débit minimum biologique à Saint Savinien

Le <u>débit minimum biologique</u> doit se comprendre comme un enjeu très localisé lié à un aménagement et qui ne doit pas être confondu avec l'enjeu du débit biologique de l'estuaire qui interroge surtout la gestion du grand bassin versant et qui nécessite le maintien d'un débit fluvial.

L'alimentation en eau des ouvrages de franchissement (2,2 m³/s) constitue un objectif incontournable et minimal. En période de fermeture des vannes, l'analyse montre la grande complexité des mécanismes reliant la débitance de la passe à poissons et l'attractivité hydraulique du bras naturel à relier avec la forte artificialisation du régime instantané des débits restitués par les clapets. La circulation des poissons interroge donc plus les dispositifs techniques (passe à poissons et passage sous les vannes) que les débits eux-mêmes.

La qualité des eaux en pied de barrage se rapproche plus de celle d'un cours d'eau que de l'estuaire notamment pour la salinité et l'oxygène, sauf en ce qui concerne la turbidité.


Le lien entre débit d'étiage, turbidité et enjeu biologique reste cependant indirect au niveau de Saint Savinien puisqu'il interroge l'ensemble du processus de gestion du risque d'envasement.

Pour la salinité, les débits qui garantiraient une certaine pérennité de la sectorisation haline de l'estuaire en étiage et donc le maintien d'une zone oligohaline dans le haut estuaire sont évalués entre 12 et 15 m³/s sur 4 jours consécutifs.

Conclusions : proposition de débit biologique estuarien

4. Les enjeux du changements climatiques : Notre point de vue.

- 1. Relativement aisé de projeter les futurs thermiques mais incertitudes sur l'inertie liée à l'océan et de futures canicules encore jamais rencontré;
- 2. Plus complexe de croiser avec les futurs de l'hydrologie et hydrosédimentaire
- Hasardeux avec les outils développés de projeter les futurs de l'oxygène en raison du fonctionnement trophique des estuaires

Exemple de paramétrage d'un sous ensemble de modèle biogéochimique explicite

source thèse de Katixa Lajaunie_Salla Modélisation de la dynamique de l'oxygène dissous dans l'estuaire de la Gironde (2016)

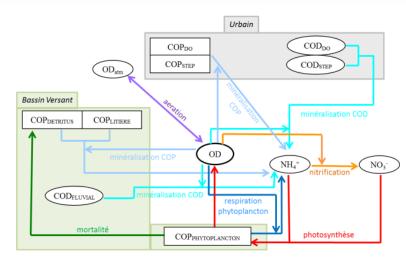


Figure II.4: Processus biogéochimique du modèle d'oxygène

Tableau II.5: Formules des paramètres intervenant dans les équations du modèle biogéochimique

C	N	F1-4'	D:f:
Symboles	Nom	Formulation	Références
f(T)	Fonction limitante par la température	$f(T) = Q_{10} \frac{T - T_{ref}}{10}$	(Regnier et Steefel, 1999)
f(T)	Fonction limitante par la température dans la photosynthèse	$f(T) = \theta^{T - T_{ref}}$	(Ambrose et al., 1993)
f(I)	Fonction limitante par la lumière	$f(I) = \frac{l_o \alpha_{PAR} e^{-K_e h}}{l_s} exp\left(1 - \frac{l_o \alpha_{PAR} e^{-K_e h}}{l_s}\right), \ I_o: \text{Intensit\'e lumineuse (J.m².s⁻¹)}$	(Steele, 1962)
f(N)	Fonction limitante par les nutriments	$f(N) = \frac{[NH_4^+] + [NO_3^-]}{[NH_4^+] + [NO_3^-] + K_N}$	(Ambrose et al., 1993)
K_e	Coefficient d'atténuation	$K_e = 0.13 + 0.049.MES$	(Irigoien et Castel, 1997)
α_N	Fraction de $\mathrm{NH_4}^+$ assimilée par le phytoplancton	$\alpha_N = \left(\frac{[NH_4^+], [NO_3^-]}{(K_N + [NO_3^-])(K_N + [NH_4^+])}\right) + \left(\frac{[NH_4^+], K_N}{([NH_4^+] + [NO_3^-])(K_N + [NH_4^+])}\right)$	(Zheng et al., 2004)
k_{aera}	Taux d'aération (s ⁻¹)	$k_{aera} = k_{600} \left(\frac{600}{Sc_{02}}\right)^{-n}, \text{ with } n = \begin{cases} \frac{2}{3} \ if \ U_{10} < 2m.s^{-1} \\ -\frac{1}{2} \ if \ U_{10} > 2m.s^{-1} \end{cases}$	(Wanninkhof, 1992) (Jähne et al., 1987)
k_{600}	Vitesse de transfert de gaz normalisée au nombre de Schmidt de 600 (cm.h ⁻¹)	$k_{600} = 1.8e^{0.0165v} + [1.23 + log(A)][1 - 0.44SSC].U_{10}$ v : courants (m.s ⁻¹); A: surface (km²); U_{10} : vent at $10 \text{ m (m.s}^{-1})$; MES: concentration de la matière en suspension (g.L ⁻¹)	(Abril et al., 2009)
$[OD]_{sat}$	Oxygène dissous à saturation $(\mu mol.L^{-1})$	$[OD]_{sat}=14,652-0,0841*S+[-0,41022+0,00256*S+A(S,T)*T]*T$ A(S,T)=0,007991-0,0000374*S-0,000077774*T S : salimité et T : température (°C)	(Lopes et al., 2008)
Sc_{OD}	Coefficient de Schmidt	$Sc_{OD_{(T:S)}} = \frac{sc_{O_{2(T:25)}}}{sc_{O_{2(T:0)}}}.S + Sc_{O_{2(T:0)}}$	(Wanninkhof, 1992)
$Sc_{OD_{(T;35)}}$	Coefficient de Schmidt pour une salinité de 35 psu	$Sc_{OD_{(T:35)}} = 1953.4 - 128T + 3.9918T^2 - 0.050091T^3$	(Wanninkhof, 1992)
$Sc_{OD_{(T;0)}}$	Coefficient de Schmidt pour une salinité de 0 psu	$Sc_{OD_{(T;0)}} = 1800,6 - 120,1T + 3,7818T^2 - 0,047608T^3$	(Wanninkhof, 1992)

Tableau II.6 : Valeurs des paramètres intervenant dans les équations du modèle biogéochimique

Symboles	Minéralisation	Unité	Value	Références
KoD	Constante de demi-saturation de l'OD pour la minéralisation	μmol.L ⁻¹	15	(Regnier et Steefel, 1999)
Q_{10}	Coefficient de température pour la minéralisation	/	2	(Regnier et Steefel, 1999)
T_{ref}	Température de référence	°C	20	/
C/N	Rapport carbone azote	/	10	/
O/C	Rapport oxygène carbone	/	1	/
Symbol	Photosynthèses			
G_{pmax}	Vitesse de croissance maximale du phytoplancton	j ⁻¹	0,25	(Thouvenin et al., 1994)
K_N	Constante de demi-saturation pour N	$\mu mol. L^{-1}$	0,714	(Xue et al., 2014)
I_s	Intensité lumineuse de saturation	$J.m^{-2}.s^{-1}$	145	(Di Toro et al., 1977)
θ_{Ph}	Coefficient de température de photosynthèse	/	1,066	(Zouiten et al., 2013)
α_{PAR}	Fraction l'énergie solaire incidente sur la surface (PAR)	/	0,45	(Brock, 1981)
$(C/N)_{Ph}$	Rapport carbone azote pour la photosynthèse	/	6	/
$(\mathcal{O}/\mathcal{C})_{Ph_{NH_4^+}}$	Rapport oxygène carbone pour l'assimilation de NH_4^+ par le phytoplancton	/	1	/
$(\mathcal{O}/\mathcal{C})_{Ph_{NO_3^-}}$	Rapport oxygène carbone pour l'assimilation de NO_3^- par le phytoplancton	/	1,25	/
Symbol	Nitrification			
k_{nit}	Cinétique de nitrification	j ⁻¹	0,1	(Ambrose et al., 1993)
$K_{NH_4^+}$	Constante de demi-saturation pour NH ₄	μmol.L ⁻¹	100	(Billen et al., 1994)
K_{OD}	Constante de demi-saturation pour OD de nitrification	$\mu mol.L^{-1}$	15	(Regnier et Steefel, 1999)
$(O/N)_{nit}$	Rapport oxygène azote pour la nitrification	/	2	/
Symbol	Aération			
A	Surface	km²	500	(Abril et al., 2009)
Symbol	Mortalité			
k_m	Cinétique de mortalité	j ⁻¹	0,01	(Thouvenin et al., 1994)

Merci

Des questions?

Bruno COUPRY

eaucea@eaucea.fr

05 61 62 50 68

www.eaucea.fr